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Abstract

Groundwater plumes containing dissolved
uranium at levels above natural
background exist adjacent to uranium ore
bodies at uranium mines, milling
locations, and at a number of explosive
test facilities. Public health concerns
require that some assessment of the
potential for further plume movement in
the future be made. Reaction-transport
models, which might conceivably be used
to predict plume movement, require
extensive data inputs that are often
uncertain. Many of the site-specific inputs
are physical parameters that can vary
spatially and with time. Limitations in
data availability and accuracy mean that
reaction-transport predictions can rarely
provide more than order-of-magnitude
bounding estimates of contaminant
movement in the subsurface. A more
direct means for establishing the limits of
contaminant transport is to examine actual
plumes to determine if, collectively, they
spread and attenuate in a reasonably
consistent and characteristic fashion.
Here a number ofU plumes from ore
bodies and contaminated sites were
critically examined to identify
characteristics of U plume movement.

The magnitude of the original contaminant
source, the geologic setting, and the
hydrologic regime were rarely similar
from site to site. Plumes also spanned a
vast range of ages and no complete set of
time-series plume analyses exist for a
particular site. Despite the accumulated
uncertainties and variabilities, the plume
data set gave a clear and reasonably
consistent picture of U plume behavior.
Specifically, uranium plumes:

* Appear to reach steady-state, that
is, they quit spreading rapidly
(within a few years).

* Exceed roughly 2 km in length
only in special cases e.g. where in
situ leaching has been carried out.
The majority is much smaller.

* Exhibit very similar U chemistry
between sites. This implies
analogous contaminant attenuation
mechanisms despite their location.
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1.0 Introduction

Uranium plumes in groundwater have been
produced in the course ofmining, ore
processing, and weapons testing. Because
of concerns about off site movement of U
in groundwater, many of the sites are being
actively remediated while others are being
considered for remediation; most will
require some long-term monitoring.
Natural processes, such as sorption, mineral
growth and dispersion occur in the absence
of, and often in parallel with, active
remediation and collectively set limits on
how far a particular plume can move. To
assess performance and to guide long-term
monitoring, it would be useful to know
what these limits are.

Conceptually, a plume of dissolved U
emanating from a point source can be
expected to have the highest dissolved
contaminant levels near the source and
progressively lower level down-gradient.
In theory, the direction of maximum
advance of contaminants should be parallel
to the hydrologic gradient. Once the source
term is removed, or treated to stop further
addition ofcontaminant to the groundwater,
e.g. with a landfill cap, dilution by fresh
recharge should lead to a decrease in
dissolved phase concentrations. Indeed,
dilution along the leading edge of a plume
alone should ultimately arrest subsequent
advance of a plume. Note though that, in

the absence of chemical removal
mechanisms (natural or engineered), the
contaminant mass in a plume is unaffected
by dilution. Natural mechanisms that
reduce the bioavailable mass of U in soil
solutions include reversible and/or
irreversible sorption and chemical
transformation, e. g. reduction to less
soluble forms. This natural reduction in
mobile U mass would tend to hasten the
cessation ofplume advance. Recent work
on leaking underground fuel tanks 1
suggests that if chemical processes were
collectively the primary control over finite
plume movement, we would expect to see
similar behavior for U plume migration.
For example, we might expect all U plumes
to reach a similar length before halting.
Knowledge ofa general U plume cessation
length would be useful in a public health
sense as it would constitute a first step in
assessing the potential impact of particular
plumes on groundwater. It would also
allow monitoring wells to be more
effectively located for groundwater
protection. We hypothesize that the natural
history ofU plumes is best developed by
examining large numbers of individual
plumes after the approach of Rice et al. 1
and resolving features of their collective
advance and decay into specific chemical
and physical processes.

2.0 Uranium in Soils

Feldspars in alkaline and granitic igneous
rocks are the main source for much of the
U present in near-surface natural
environments (see table 1 for
environmental concentrations of U).
Transport of U dissolved from igneous
source rocks typically occurs under

oxidizing conditions when U is present as
+2 a

the uranyl ion U (VI) (UO2 ) . U is
substantially less soluble under reducing

a The oxidized uranyl(VI) species will be

expressed hereafter as UO2'.
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conditions, when it is typically present as
aqueous U (OH)4 .

Table 1.Typical uranium contents of various
rock types2 .

Range of
Rock Type Concentrations

(ppm)
Igneous

Diorite and
Quartz Diorite
Alkaline
Intrusive

Mafic 0.1-3.5

Sedimentary

Sandstone 0.5-4
Orthoquartzite 0.2-0.6
Carbonate 0.1-10
Shale 1-15

Black shale 3-1250
Lignite 10-2500

Phosphorite 50-2500
Average

Large Scale U Sources Concentration
(ppm)

High-grade U deposit 104_105

High-heat production 10
granite

Continental Crust 1
Bulk Earth 2 x 10.2

Figure 1 shows uranyl speciation under
oxidizing conditions (f0 2 = 0.2 atm) and
pCO2 = 10". Note the prevalence of
UO2+- carbonate complexes at pH >_7. In
the absence of CO2 , but at the same f0 2,
uranyl-hydroxy ions predominate at pH >
5. Under nominally reducing conditions
(log f0 2 ;z -70 atm), 25°C, and low total U
concentrations (e.g., [U]T < 10-14 M), U(IV)
forms U-hydroxo complexes at pH > 6
(Fig. 2 and table 2). However, when [U]T >
10" m, uraninite (UO2)cr becomes stable.

J-_ -6
,, -7 W022:.aCOrm .1

-8,U- 2 C-8H (UO2)3OH)

-9u0 2co!

. -10

-12
2 3 4 5 6 8 9

pH

Figure 1 Uranyl speciation at 25°C and 1 bar as
a function of pH under oxidizing conditions; f0 2
= 0.2 atm and pCO2 = 10.3.5 atm. Uranium
speciation data is from the Geochemical
Workbench (GWB) software package 3.

25'Cl 1 bar [U]T=l x 10 1 4 rriclaf

E

oD

pH

Figure 2. Uranium speciation at 25°C and 1 bar
as a function of fO2and pH; [U]toa = 10-14 molal.
Uranium speciation data as in figure 1.

2.1 Ore Formation and Weathering

Subsurface accumulations of uranium (ore
bodies) tend to occur at redox fronts where
oxidizing U-rich solutions encounter
electron-rich solids, typically organic, that
are able to reduce soluble U(VI) to
insoluble U(IV)-containing minerals. An
exception is insoluble uranyl vanadates that
form many of the ores found in the

2



Table 2. Equilibrium constants (K) for selected U(VI) aqueous complexes.

Chemical Reaction Log K (25°C and 1 bar)3'4

U022+ + 2H+ <* U 4+ + H20 + 0.502(g)
-33.78a

UO2OH+ + H+ <:> UO22++ H20
5.091a

UO2(OH)2,,q + 2H+W * U0 22++ 2H 20 11.5b

U0 2(OH)3"+ 3W UO22++ 3120 20.00'

U0 2(OH) 42-+4W+ U0 22++ 4H 20
33.00b

(U0 2)2OH
3++ H+ <:> 2UO22++ H20 2.70b

(U0 2)2(OH) 22++ 2H+W :> 2UO22++ 2H20 5.68a

(UO2)3(OH) 42++ 4W <::> 3UO22+ + 4H20 11.90b

(U0 2)3(OH) 55+ + 5W+ : 3U0 2
2+ + 5H 20 15,82a

(U0 2)3(OH)7- + 7H- ,: 3U0 22' + 7H20 28.337a

(U0 2 )4(OH) 7++ 7W- <-:> 4U0 22++ 7H20 21.9b

UO2(,) + 4H+ ::> U4++ 2H20 -4.638a

U02+ + 3ff <=> U4++ 1.51120 + 0.2502() -15.07a

U(OH)3++ 3H+ <= U4++ 3H20 4.88a

U(OH)4 + 4H+ <WU
4++ 4H20

8.534a

U(OH)5"+ 5H+ <=> U4++ 5H20 16.498a

U(OH)3++ I <=> U4++ H20
0.6494a

U02C03,aq <= UO22++ CO32-
-9.67b

UO2CO3,aq + H+ <* U0 2
2++ HC0 3" 0.694a

U0 2(CO3)22" <=> U0 22++ 2CO3
2 - -16.94b

U0 2(CO 3)2
2 + 2H+ <:> U0 22++ 2HC0 3" 3.608a

U0 2(C0 3) 3
4- < U0 2

2 + 3C0 3
2- -21.60b

U0 2(CO3)34" + 3W+ <:: U0 22++ 3HCO3" 9.33a

(U0 2) 3(CO3) 66" <: 3U0 2
2+ + 6C0 3

2 -54.0b

(UO 2)2CO 3(OH)3 + 4H+ < 2U0 2
2+ + HCO3 + 3H 20 11.524a

(U0 2)3CO 3(OH)3++3H+ --> 3UO224 + CO32"+ 3H20 -0.66"

(U0 2)11(CO 3)6(OH)122- + 12H+ 11UO22+ + 6CO32 + 12H 20 -36.43b

aBethke 3; bDavis 4
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Colorado Plateau in the USA 5. Uranyl
vanadates form during oxidative alteration
of reduced U- and V-bearing minerals.
Other reported U(VI) minerals that are not
as common as the vanadates are the uranyl
molybdates, tungstates, sulfates, selenites,
and tellurites 5. The most common U(IV)
bearing phases are uraninite (U0 2),
pitchblende (highly impure uraninite),

coffinite (USiO 4.nH2O), and Brannerite
(U,Ca, Y, Ce)(Ti, Fe)20 6(OH)), all of which
are typically found in U ore deposits (table
3). Other common uranyl phases, such as
uranophane (Ca(U0 2 )2(SiO 3OH)2 (H 2 0) 5),
while limited in association to the presence
of altered nuclear fuel rods and naturally
weathered uraninite, are structurally and
chemically complex (table 3).

Table 3. Common uranium-bearing minerals in rocks (after Finch and Murakami, 1999) 5.

Phase Chemical Formula Comments

Reduced U(IV) Phases
Not purely stoichiometric in nature. It

Uraninite U0 2+, can incorporate minor REE and other
cations.

Very finely grained highly impure
uraninite; very common U ore phase

Coff'mite USiO4-nH20 Zircon structure, most important ore
mineral after uraninite

Brannerite (UJ,Ca, Y, Ce)(Ti, Fe)206(OH) Metamict; most common ore phase afteruraninite and coffinite

Orthobrannerite (U6+, U4 )(Ti, Fe) 20 6(OH) Metamict; mixed valence U phase

Ianthinite ua+(u6+o02)o4(OH)6(H20)9 Mixed valence U phase; structure similarto D-U 3Os; it oxidizes to schoepite

Uranyl Oxyhydroxides

Schoepite (U0 2)80 2(OH)12(H20)1 2 Common uranyl phase

Metaschoepite (U0 2)80 2(OH) 12(H20)10 Partially dehydrated schoepite
Becquerilite Ca(U02)604(OH)6(H20)8 It likely alters to schoepite at low pH's(Finch and Murakami, 1999)5

Clarkeite (Na,Ca)(UO 2)(O,OH)(H20), (n=0- 1)

Uranyl Carbonates
Blatonite U0 2C0 3.H20 Monocarbonate; not a dehydration

product ofjoliolite
Joliolite U0 2CO3 .nH20 (nz2) Monocarbonate

Rutherfordine U0 2CO 3 Monocarbonate
Urancalcarite Ca2(U0 2 )3(CO3)(OH)6(H20) 3 Monocarbonate
Wyartite CaU'+(CO3)(UO2)0(OH)4(H20)7 Monocarbonate; first known U phase tohave pentavalent U

4



Table 3 (cont.). Common U-bearing minerals in rocks (after Finch and Murakami, 1999)5

Phase Chemical Formula Comments

Uranyl Carbonates (cont.)

Fontanite Ca(U0 2) 3(CO 3)4 (H 20) 3 Monocarbonate

Zellerite Ca(U0 2)3(CO 3)2(H20)s Dicarbonate

Metazellerite Ca(UO 2)3(CO3)2(H20), (n<5) Dicarbonate; dehydrated zellerite

Znucallite CaZnll_12(U0 2)3(CO 3)3(OH)20 &.22(H20) 4 Tricarbonate

Uranyl Silicates
Uranophane Ca(UO2)2(SiO3OH)2(H20)5 Possibly the most common U mineral

after uraninite

Soddyite (U0 2)2SiO4(H20) 2

Ursilite (Mg,Ca) 4(UO 2)4(Si 2Os)5(OH)6(H20)is

Uranosilite (U0 2)Si7 O15(H20)0 - 1 Rare mineral

Sklodowskite Mg(U0 2)2(Si 3OH)2(H20) 6

Weeksite Kl.xNax(UO2)2(Si 50 3)(H20) 4 (x=0.4)

Haiweeite Ca(U0 2)2[Si5O1 2(OH)2](H 20) 4.5

Uranyl Phosphates and Arsenates (Autunite group)

Autinite Ca[(UO2)(PO 4)]2 (H 20)i0-12

Saleeite Mg[(U0 2)(PO4)] 2 (H 20)io

Novacekite Mg[(UO2)(AsO 4 )12(H 20)s

Vochtenite (Fe2÷,Mg)Fe3+[(UO 2)(PO 4)]4(OH)(H 20)12-13

5



Table 3 (cont.). Common U-bearing minerals in rocks (after Finch and Murakami, 1999)5.

Phase Chemical Formula Comments

Uranyl Vanadates
Camotite K2(UO 2)2(V20 8)(H20) 3 Carnotite group mineral

Tyuyamunite Ca(U0 2)2(V208)(H20) 8 Carnotite group mineral

Metatyuyamunite Ca(UO2)2 (V208 )(H 20) 8 Carnotite group mineral

Uvanite (U0 2)2V60 17-15H 20

Uranyl Molybdates
Calcurmolite Ca(U0 2 )3 (MoO 4 )3(OH) 2(H 2 0) 11

Cousinite Mg(U0 2)2(MoO 4)2(OH)2(H20)5

Iriginite (U0 2)Mo 20 7(H20) 3

Tengchongite Ca(U0 2) 6(MoO 4) 20 5 (H 20) 12

Umohoite (U0 2)MoO 4(H 20) 4

Uranyl Sulfates, Selenites, and Tellurites
Deliensite Fe(U0 2)2(SO 4)2(OH)2(H20) 3

Rabejacite Ca(UO2)4(SO 4)2(OH)6(H20) 6

Uranopilite (U0 2) 6(SO 4)(OH) Io(H20)12

Zippeite K4(U0 2)6(SO 4)3(OH)10(H20) 4

Haynesite (U0 2)3(OH)2(SeO3)3(H20) 5

Cliffordite UTe309

Schmitterite (UO2)TeO3

6



Oxidative transformation of uraninite and
oxidation/corrosion of synthetic U0 2 (spent
nuclear fuel) are similar processes.
Differences in solubilities between
synthetic and natural U0 2 are observed
though, and are believed to be caused by
carbonate impurities in the natural
samples6 . Exposure to water versus dry air
also affects U0 2 oxidation rates 7.
Typically the slow rate of oxygen diffusion
at low temperatures makes the process
rather sluggish 5. Consequently, many
studies are performed at relatively high
temperatures (T > 150°C) 7. In general,
uranyl mineral formation is preceded by the
appearance of intermediate U oxides such
as U 3 0 7 and U30 8 irrespective of
temperature, even though the latter
minerals have yet to be observed in nature5.

2.2 Microbes and U

Microorganisms can affect the transport
and deposition of uranium by, respectively,
producing dissolved compounds, e.g.,
organic acids, capable of chelating
uranium8, or by reducing uranyl to less
soluble U(IV) minerals 9. Also, U can sorb
onto bacterial cell walls and migrate.
Uranyl-chelates that are anionic, e.g.
uranyl-citrate, tend to sorb to soil surfaces
less than bare uranyl, and are therefore
favored to be transported further.
Microbial breakdown ofuranyl chelates
often determines maximum transport
distance of microbially mobilized U and for
this reason remains an important area of
research 8; 10. Microbial reduction ofU
has been demonstrated using groundwater
from the Tuba City, AZ (U.S.A) U mill
tailing site 11. Column experiments with
groundwater and sand sampled at this site
showed a dramatic lowering ofU(VI)

concentration from 250 to 14 ýtg/L in a
period of 21 days at 24'C and 0.5 pig/L
after 2 months in the presence of
indigenous microorganisms 11-13. In these
experiments, microorganisms were
activated by addition of ethanol and
metaphosphate to the groundwater/sand
mixture.

2.3 Adsorption

After precipitation, adsorption is the most
important sink for U in natural systems 4;
14-17* A large number of studies have
applied surface complexation models to
explain U(VI) sorption on mineral surfaces.
Tripathi 18 and Hsi and Langmuir 19
studied U uptake on iron oxides. Redden et
al. 20 studied U(VI) adsorption on goethite,
gibbsite, and kaolinite in the presence and
absence of citric acid. Redden et al. 20,
Payne et al. 21, Payne and Waite 16, and
Payne and Waite 17 studied U(VI) sorption
onto kaolinite and ferrihydrite, and Pabalan
et al. 15 studied U(VI) sorption onto cc
alumina (aluminum oxide), Na
clinoptilolite, and quartz. Davis 4
combined surface complexation modeling
and structural characterization ofU(VI) on
a variety of minerals. Jenne 22, and more
recently, Krupka et al. 23, examined U(VI)
adsorption Kd's obtained from sediment
samples and those from various mineral
adsorption studies reported in the literature.
All these studies demonstrate that the peak
for U(VI) uptake is at the near-neutral pH
range of- 6 - 7.5 24. The sorption peak for
phosphates is much lower - pH 2.5 to 4 25.
Valsami-Jones et al. 26 and Arey et al. 27
showed that hydroxyapatite can sequester
U inside its mineral structure.

7
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In general, U(VI) sorption proceeds in the
sequence: montmorillonite (clay)
kaolinite (clay) • gibbsite z goethite >
clinoptilolite > cc-alumina > quartz >
phosphates 15; 22; 25. Relative sorption of
U tends to depend on the type of aqueous
complexes it forms in solution 4; 15; 18; 19
At high pH's, where anionic uranyl
carbonate complexes predominate, U is
only weakly sorbed due to electrostatic
repulsion by negatively charged mineral
surfaces e.g. 4; 12. Uranyl-hydroxy
complexes predominate in the pH range
between 6-8 along with the mixed uranyl
hydroxy carbonate complex 4; 19. When
carbonate concentrations are low or absent,
the predominant sorbing species are the
uranyl-hydroxy complexes, .e.g.,
(UO2)3(OH)5+4. Krupka et al. 23 critically
reviewed the environmental chemistry of
uranium and showed that U sorption is
primarily controlled by pH and carbonate
levels. Table 4 gives Krupka et al's. 23
maximum and minimum soil Kd values.
Despite the wide variation in Kd values, the
results give a reasonably clear picture of U
sorption trends on soil minerals.
Irreversible sorption ofU typically occurs
when iron and manganese oxides are

present. Typically the irreversible fraction
ofU rarely exceeds 10% of the total 28.

2.4 Colloids

Colloidal transport of U has been
investigated adjacent to both natural ore
deposits and mill tailings 12; 29-32.
Colloids are not an important transport
mechanism for U. Colloidal transport
depends on the amount and type ofcolloid
present, its capacity to migrate in the
media, and the predominant U aqueous
species in the soil solution. The
predominance of negatively charged
uranyl-carbonate species often prevents
adsorption onto negatively charged
particulate material. Mielekey et al. 29
analyzed particulate material in waters at
Po9os de Caldas mine and observed that
even when relatively large amounts of U
and Th were associated with colloids, net
transport was minor due to low colloidal
concentrations in the waters flowing
through the aquifer. A similar situation is
observed at the Cigar Lake ore deposit in
Canada where relatively low concentrations
of colloids limit U migration even when the
U concentrations in the particulate phase
and waters are similar 30.

Table 4. Minimum and maximum soil uranium Kd's (after Krupka et al., 1999)23
Kd (ml/g) pH

3 4 5 6 7 8 9 10
Minimum <1 0.4 25 100 63 0.4 <1 <1
Maximum 32 5000 160,000 1,000,000 630,000 250,000 7,900 5
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3.0 Uranium Plumes

U-contaminated sites can be separated into
three groups:
1. Uranium Mill Tailings Remedial
Action (UMTRA) sites in the USA
sites where U ore was processed.

2. Refined U releases - sites where U
was released during explosive testing
or nuclear waste storage activities.

3. Natural analogues - natural uranium
ore deposits.

3.1 Artificial Plumes

The UMTRA sites served as U ore
processing and milling plants and typically
witnessed the use of acid/alkaline leaching,
sand-slime separation, and ion-exchange
recovery processes (lime, sulfuric acid,
nitric acid, sodium carbonate, kerosene, and
ammonia gas were often used as part of the
leaching processes). The UMTRA sites are
classified in two types: Title I and Title II.
Title I sites are those in which remedial
action such as removal and relocation of
the mill tailing piles has been performed.
Conversely, Title II sites still have their
mill tailings in place and remedial action or
further mining and processing remain in
consideration. There are 24 Title I
UMTRA sites located mostly in the western
United States (Fig. 3). Most were
established in the 1950's and comprise the
bulk of the U-plume data obtained as many
of them have been the subject of recent
(-15 years) monitoring and remediation. In
general, these sites contained (Title I) or
still containing (Title II) piles ofmill
tailings and other contaminated material
forming alluvium-like surface deposits
where the bulk of the material has been
removed and relocated elsewhere in

specially engineered repositories. Title II
UMTRA sites still have their mill tailings
in place which typically contribute high
levels ofU to aquifers near the tailing
source. This appears to result in longer
plumes. The Title II sites will be discussed
briefly because temporal monitoring of
groundwater chemistry is scarce and
evaluation of existing literature data is still
in progress. Natural recharge through
tailings piles is (or was) the primary source
ofdissolved U. Most of the aquifers
beneath mill piles are contaminated,
exceeding MCL levels ofU (MCL =
Maximum Concentration Limit defined by
the U.S. Environmental Protection Agency
= 44 ppb for U) 33. Additional
contaminants in the effluent include lead,
cadmium, molybdenum, nitrate,
ammonium, and selenium. Some nearby
rivers to Title I UMTRA sites are
contaminated with U, but not at dangerous
levels. For the majority of UMTRA sites,
deep aquifers (even those close to the
processing plants) do not show high levels
of contamination.

Groundwater chemistry can be highly
variable from site to site. Some sites, such
as Riverton, Wyoming 34; 35 and
Monument Valley, Arizona 3 6 primarily
contain uranyl carbonate (uranyl bi- and tri
carbonate) species whereas others, such as
Falls City, Texas, have lower pH's (pH 2
5) in certain areas of the site, and have
uranyl-hydroxyl complexes. Nevertheless,
except for the anomalously low pH site of
Falls City (Texas), the groundwater
chemistry between sites is quite similar as
will be exemplified later in the text. White
et al. 34 envisioned three general transport
mechanisms for U, which may well apply
to all UMTRA sites:
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Figure 3. UMTRA Ground Water Project Title I site locations 37.
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Figure 4a and b. Eh-pH diagram at 25°C and 1 bar showing U phase boundaries and data from nine title I
UMTRA sites (n = 778 data points; see text). It is assumed that [U]total = [UO 2 '+ (molal units) in generating
this diagram. (a) [UJtot0 ] = 10-3 molal, [Ca++] = 101-" molal, and fCO2 = 10-2.5 atm. Schoepite starts
appearing at [U] = 10"'5molal.; (b)). [U],ot.l = 10-7 molal, [Ca++] = 10"1"s molal, and fCO2 = 102."5 atm.
Uranium speciation data as in figure 1. Notice in this figure that only uranyl aqueous species are depicted
in the diagram. Becquerelite (synthetic) solubility data is from Vochten and Van Haverbeke 38
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(1) initial dewatering of the slurry material
in the tailings pile and concomitant
downward flow soon following deposition,
(2) mixing and dilution ofthe tailing pore
waters with local ground and seepage
waters, and (3) periodic meteoric water
recharge into the tailing pile by
precipitation or snowmelt. Subsequent U
transport through the alluvium will be
highly dependent upon solution chemistry
(i.e., pH, ionic strength, and composition)
and redox state of the system.
Bulk groundwater Eh (redox potential), U,
and pH analyses from nine Title I UMTRA
sites taken over a 3-8 year time span are
shown in figures 4 through 7. The database
source is from the DOE-GJO Site
Environmental Evaluation Uranium Mill
Tailings Remedial Action (SEE UMTRA
database). Note first of all that the Eh-pH
data extends into the uranyl (UO2++), uranyl
hydroxide (TO2OHW), and uranyl-carbonate
U0 2(CO 3)2 species fields when [U] = 10-7
m and [Ca++] -102 m (Fig. 4a). If [U] =10
m and with the same Ca concentration (Fig.

0

pH

4b), all ofthe data falls between the
stability fields of uraninite (U0 2),
schoepite, becquerelite, and uranyl fields.
If the most scattered data represented by
the Falls City (Texas) site is removed, the
other 8 sites show a cluster of data points
forming a characteristic vertical trend
plotting at a pH - 7 (Fig. 5). The Falls
City, Texas data set differs from the others
by possessing a bimodal pH distribution 39

(Fig. 6) and a pH-independent [U] level
opposite to the other UMTRA sites.
Bimodal pH distributions are not
uncommon in contaminated groundwater
aquifers associated with mill tailings or
mining sites that have been widely exposed
to pervasive in-situ leaching (ISL). Other
examples of these are Tuba City (Arizona),
Konigstein (Saxony, Germany), and Split
Rock (Wyoming - Title II). At all these
sites, the low pH groundwater is spatially
associated with the mill tailing repository
area and/or chemically associated with

1
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Figure 5a and b. Eh-pH diagram at 25"C and 1 bar showing U phase boundaries and data from eight title I
UMTRA sites (Falls City (Texas) data removed; n = 634 data points). It is assumed that [Ultotal - [U02++]
(molal units) in generating this diagram. (a) [Ulto"J1 = 10-3 molal, [Cali = 10.1.8 molal, and fCO2 = 10"2.5 atm.
Notice that solid uranyl phases appear in the diagram for this [UItot,1; (b) [Uhtot, = 10-7 molal, [Ca2] = 10.1_8

molal, and fCO 2 = 10"2*5 atm. Schoepite starts appearing at [Ultotal = 10-6.5 molal. The uranyl species field
covered by the data points is U0 2(CO3)2 ".Uranium speciation data as in figure 1. Becquerelite (synthetic)
solubility data as in figure 4.
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residual mine leaching waters. Even
though the low pH waters in Falls City
(Texas) and the above mentioned sites
usually contain significant amounts of S04
and P04-, U does not exceed the maximum
range of concentrations of - 104 - 10-' m
common to all the studied mill tailing sites.
Therefore, the low pH seen in these
anomalous groundwater may reflect the
presence of residual sulfate remaining in
the aquifer pores as precipitates or as fluid
pockets which were dispersed by present
water recharges or remediation activities.

The vertical trend in Fig. 5 originates from
the uraninite stability field overlapping in a
parallel fashion to the schoepite
becquerelite equilibrium boundary (Fig. 5a)
or plotting inside the field of the U
carbonate complex (Fig. 5b) using a total

25 1

CO2 fugacity (fCO2) of 10-2.5 atm typical of
soils. If a lower CO2 fugacity of 103 atm
typical of equilibrium with the atmosphere
is considered, the becquerilite-UO 2(CO3)3

4

equilibrium boundary in Fig. 5a shifts to a
lower pH diminishing the becquerelite
stability field. High levels of dissolved
organic carbon in UMTRA groundwater
(-200 ppm) suggest that a relatively high
fCO 2 value of 10-2,5 atm is a reasonable
input to use in the chemographic analyses
below. The becquerelite solubility value at
25°C and 1 bar chosen for this analysis is
taken from Vochten and Van Haverbeke 38
for a synthetic material. Casas et al. 40 and
Sandino and Grambow 4 1 reported
becquerelite solubility values for a natural
sample from the Shinkolobwe U deposit in

0
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species
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I I I I
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Figure 6. Bimodal distribution of pH for groundwater measured at Falls City (Texas) Title I UMTRA site
(n = 249 data points; see text).

12

20

15

10

5

0 i

12



Zaire (Africa) and from the equilibria
during the transformation of synthetic
schoepite to becquerelite, respectively. The
lower solubility value obtained by Casas et
al. 40 for natural becquerelite predicts
supersaturation of the mineral with the
groundwater chemistry at the considered
UMTRA sites. However, the much larger
solubility values obtained for synthetic
becquerelite 38; 41 are somewhat similar
and show a near equilibrium relationship
between schoepite-becquerelite for the
average Ca concentrations observed in
these groundwaters. This is a more realistic
association considering the commonly
observed presence of schoepite as a
hydration product ofU oxide in natural and
synthetic systems. The reason for the gross
oversaturation, with respect to natural
becquerelite, is that Casas et al. 40 obtained
a solubility value for natural becquerelite

that is considerably lower than those
obtained for synthetic analogues, possibly a
result of lower surface areas present in
macroscopic crystals yielding much lower
solubilities.

Figures 7a and 7b show U mineral
solubilities as a function of pH and was
constructed using a mean value of 0.0158
m for the maximum Ca concentrations
obtained from several groundwater
analyses at various UMTRA sites. Using a
median value of 0.0065 m for all Ca
concentrations at the UMTRA sites that
were considered, causes a negligible
enlargement of the schoepite field in Fig. 7.
These figures show that for the assumed
fCO 2 value of 10-2.5 atm the majority of
data points fall within the stability field of
the U0 2(CO 3)22-species. Using a lower

1 2 3 4 5
pH

(a)

0-J

6 7 8 9 10 2 3 4 5
pH

6 7 8 9 10

(b)

Figure 7a and b. Uranyl phase solubilities as a function of pH at 25°C and 1 bar. It is assumed that [U],,,,.
S[UO 2++] (molal units) in generating this diagram. (a) [Ca+] = 10"18 molal and fCO2 = 10-2" atm (all data
from the Title IUMTRA sites; n = 778 data points); (b) [Ca+] = 10"1.8 molal and fCO2= 10"2.5 atm (no Falls
City (Texas) data); n = 634 data points). Uranium speciation data as in figure 1. Becquerelite (synthetic)
solubility as in figure 4. Notice the absence of data below [UJto = 10"e molal which denotes the lower level
of analytical detection.
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fCO2 value of 10-35 atm would extend the
schoepite field to lower uranyl
concentration values causing some of the
data points to fall well inside this field. In
general, the maximum uranyl
concentrations correspond to the schoepite
U0 2(CO 3)22- equilibrium suggesting a
solubility and, therefore, transport control
on dissolved uranyl in the most
contaminated aquifers that are adjacent to
the former mill tailing impoundments.
The close association of schoepite and
becquerelite during the alteration of
uranium oxide has been previously reported
in the literature 38; 41-45. Becquerelite is
considered to be a thermodynamically
stable product of schoepite (or meta
schoepite) alteration in the presence of
alkaline elements such as Ca 45; 46. Both
phases have been observed to coexist in
shallow weathered zones of natural
uraninite deposits, and in short- and long
term U0 2 corrosion experiments simulating
alteration of anthropogenic uranium solids
like nuclear spent fuel 5; 41; 44-46
However, their existence in groundwater
reservoirs directly associated with mill
tailing sites still needs to be confirmed. In
the lack of unambiguous evidence for
noticeable weathering mineralization in the
studied mill tailing sites (Title I and II
UMTRA sites in this case), we propose that
the uranyl-hydroxy and uranyl-carbonate
complexes such as U0 2(CO3)22 -and
UO2(OH)+, respectively, along with their
intrinsic local carbonate inputs near and far
from the tailings impoundment, would be
the most likely aqueous species to buffer the
groundwater chemistry to neutral pH's.
Maximum U concentrations observed at
various contaminated aquifers in UMTRA
sites might be controlled by the schoepite
uranyl-carbonate (possibly in combination
with becquerelite) equilibrium at near
neutral pH's. This observation is also

applicable to Title II UMTRA sites where
the mill tailings are still in place and some
milling operations along with possible
mining activities also remain active.
Dilution and sorption are the most likely
mechanisms responsible for lowering U
concentrations away from the plume source.

The reaction mechanisms described before,
based on the large DOE Grand Junction
Project Office groundwater chemical
database (SEE UMTRA - Title I UMTRA
sites), plus recent DOE and the Nuclear
Regulatory Commission (NRC) public
reports (Title II UMTRA sites), clearly
suggest a reaction path controlled by
uraninite dissolution and movement of
groundwater compositions towards the
schoepite (or meta-schoepite)/fluid
equilibrium at a pH between -6.5 and -7.5.
As shown in Fig. 5a, the proposed path
begins with oxidative dissolution of
uraninite to uranyl-carbonate (reaction 1)
and ends with the equilibrium between
schoepite and U0 2(CO3)2 carbonate
species (reaction 2). Equilibrium between
schoepite and becquerelite may occur in the
presence of Ca (reaction 3).

(1) U0 2(s)+ 1/2 02 + 2 HC0 3 =
U0 2 (CO 3 )22- + H 20

(2) 8 U0 2(CO 3)22- + 20 H 20 + 3 02 ¢
(U02 )80 2(OH)12*12H 20 + 16 HCO3

(3) (U0 2)80 2(OH)12 .12H 20 + 2 H++ Ca++
<> Ca(U0 2)60 4(OH) 6o8H 20 + 2 UO2++
+ 8 H 20

The second type of U plumes arise from
releases of refined U, such as those
involving explosive activity or nuclear
waste storage. One located at Lawrence
Livermore National Laboratory (LLNL)
involved explosive activity in pits and is
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still under investigation. Preliminary U
well data for this site obtained near the
explosive pits show plumes lengths of-0.5
kilometer measured to the 11 pCi/L (, 16
ppb) contour. Some important nuclear
waste sites that are under current
investigation include the Hanford Tank
Farm 47 in Washington and the Savannah
River Site (SRS) in Georgia, but were not
considered in the present study for several
reasons: (1) reports on groundwater
chemistry needed to assess plume length are
not yet available (SRS) or are in the process
of being updated or published (Hanford),
and (2) the monitoring well network
distribution in some cases (e.g., tank farm at
Hanford) is not adequate for the purpose of
this study. At this moment, the SRS study
has not reported U plumes beyond the tank
farm and most of the currently available
data is for Tritium and TCE plumes 48.
Even when there are insufficient monitoring
wells at a distance from the Hanford tanks
to accurately estimate further plume
extensions beyond the source, we report
only one relatively large U plume in one
process trench (see table 5).

3.2 Natural Plumes

Natural uranium ore deposits are often used
as analogues for long-term high level
nuclear waste repositories but are also
useful analogues for existing contaminant
plumes. The principal U ore source mineral
in these deposits is reduced U oxide (U0 2)
which is subsequently altered during fluid
mineral interaction under oxidizing
conditions to uranyl- oxides, phosphates,
and silicates. Most of the U migration,
away from the concentrated uranium ore,
occurred after oxidation through
groundwater mass transport. Subsequently,
U became incorporated into surrounding
rock through sorption and precipitation of

weathering phases. This sequence of
oxidation, transport, and deposition is
expected to be a reasonably good analogue
for transport of U present in man-made
radioactive waste repositories, mine mill
tailings, and ore processing plants. Since
U-contaminated soils are chemically
analogous to U ore bodies, the extent of the
contaminated "halo" around the latter might
also provide useful information about plume
migration.

Roughly 40% of U ore bodies occur as
epigenetic sedimentary deposits such as
those found in the Wyoming Tertiary basins
and in coastal plain systems, e.g. the South
Texas Uranium province 49. Other U
occurrences are associated with alkaline
volcanic and granitic igneous provinces,
e.g. the Sanerliu granite-hosted U deposit in
southern China 50, the Pefia Blanca district
rhyolite tuff in the state of Chihuahua,
Mexico 51-57, the Palmottu U deposit in
Finland 58; 59, the Maqarin U hydrothermal
deposit in northern Jordan 60; 61, the Valles
natural analogue at Valles Caldera in New
Mexico 62, the Konigstein U mine in
Saxony, Germany 63; 64, and the Po9os de
Caldas alkaline complex in the state of
Minas des Gerais, Brazil e.g. 65; 66 We
focus here on those ore bodies that have
been well studied and monitored for long
periods of time and whose groundwater
chemistry provide an objective plume
length analysis. These include the Alligator
Rivers region (the Koongarra ore deposit) in
Australia, the natural uranium
reactors/mines of Oklo in the Republic of
Gabon in equatorial Africa, the Morro do
Ferro and Osamu Utsumi U mines at Po9os
de Caldas alkaline complex in the state of
Minas Gerais, Brazil, and Cigar Lake in
Saskatchewan, Canada.
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3.2.1 Koongarra

The Koongarra ore deposit is located in
northern Australia and is part of the
Alligator Rivers Uranium Field. The host
rock for the Koongarra ore deposit is a
quartz chlorite schist and the zone of
primary mineralization is about 100 meters
deep 67. The primary mineralized region is
composed ofuraninite and is situated
between a graphite rich region bounding the
Kombolgie Sandstone and the Koongarra
reverse fault 67. According to Yanase et al.
32, the groundwater flowpath ofthe
groundwater begins at the surface and
percolates through the porous Kombolgie
Sandstone and the Koongarra reverse fault
that separates the sandstone from the ore
body. Fluids move deeper into the primary
mineralized zone through the fault, but shift
away from it to a horizontal flow regime
creating a weathered zone of secondary U
mineralization. The close proximity of the
primary mineralized region and the
graphitic schist layer suggest that reducing
reactions involving this strata were
responsible for the precipitation of uraninite
from fluids percolating through and near the
fault. A very similar scenario caused the
formation of uraninite in Oklo natural
reactors where the mineralized region is
also bounded by a fault 68; 69. The primary
ore body at Koongarra has been affected by
weathering forming a secondary ore
alteration zone extending the limits of the U
migration 67; 70. The presence of this
weathered zone is also a good indication of
groundwater flow through the ore body.
Weathering processes such as precipitation
and concomitant transformation of
secondary minerals, e.g., chlorite -4
vermiculite + Fe-minerals -+ kaolinite + Fe
minerals, coupled with sorption by these
phases, retards U transport and migration
downstream from the main ore deposit. The

precipitation of sal6eite
(Mg(U0 2)2(PO4)-10H 20) and the
irreversible sorption ofU onto Fe-oxides
produced by chlorite weathering likely
controlled U migration and/or dispersion at
Koongarra 71. According to Murakami et
al. 71, sal6eite, along with metatorbernite,
precipitated between apatite and
sklodowskite grains at the expense of these
two latter phases. These authors suggested
on the basis of micro-textural observations
that localized interfacial precipitation is the
most plausible way of forming these phases
in undersaturated fluid conditions for the
Koongarra groundwater. Moreover, Sato et
al. 72 reported significant U scavenging
associated with Fe oxides (nodules) having
concentrations many times larger than in the
groundwater.

The Koongarra ore is exposed to monsoonal
climate, but seasonal sampling suggests that
a sharp change in water recharge has little
effect on groundwater bulk chemistry. In
general, the groundwater of this deposit is
dilute, with total dissolved solids in the
range of 200 mg/L 32. The deeper
groundwater is enriched in CO2 indicating
that U in solution, within the weathered
zone, is mobilized as uranyl-carbonate
complexes 32; 73. The primary mineralized
zone is traversed by the Koongarra fault
which may well serve as a conduit for
surface water to permeate into the deeper
formations and dilute the groundwater 32;
73. U concentrations in the groundwater
wane away from the primary mineralized
zone for about 200 meters until background
concentrations are observed. Groundwater
flow modeling 74 suggests that water
moving away from the porous sandstone
and the fault are primarily transmitted
through a very heterogeneous fractured
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media in the weathered zone, making the
characterization of flow velocities at the
scale of the ore very difficult. Therefore,
simplistic 1-D solute transport simulations
using single velocities cannot be
satisfactorily applied for the description of
U migration in this area 74 .

3.2.2 0klo

The Oklo natural reactors in The Republic
of Gabon, equatorial Africa, consist of two
natural reactors, Bangombe and
Okelobondo, which represent an extreme
case where large amounts of transuranium
series elements were produced over long
periods of time, after the reactor went
critical -2 billion years ago 68.
Furthermore, the tropical climate assures
abundant recharge. The Oklo reactors have
been extensively studied due to potential
similarities to proposed long-term high
level nuclear waste repositories 68; 75. The
reactor cores are composed of uraninite
surrounded by Precambrian pelitic
sandstones and unmetamorphosed volcanic
rocks 68. U Mineralization ofthe Oklo
cores occurs within a sedimentary layer of
fluvial sandstones and conglomerates
associated with a carbonate
rich/argillaceous matrix 68. An interesting
similarity between Oklo and Koongarra ore
deposits is that both are bounded by a major
fault which serves as a natural barrier, and
as a conduit, limiting U migration and/or
dispersion through groundwater percolation
near the fault and along the weathered zone.
In both cases, the fault served as a conduit
for fluid recharge and as the initial point for
the oxidation zone to originate. The
estimated maximum axial plume length for
Bangombe and Okelobondo are 0.25 and
-1.3 km, respectively. Recent reactive
transport models on Bagombe and
Okelobondo by Ayora et al. 69 and Salas et

al. 76, respectively, suggest that local
geology and mineralization in the host strata
controls fluid chemistry. At Okelobondo,
Fe2+/Fe(OH)3 and Mn-minerals control the
reaction paths for two types of site
groundwater 76. At Bangombe the pore
water chemistry appears to be controlled by
the Fe2+/Fe(OH)3 equilibria 69.

3.2.3 Polos de Caldas

The Pogos de Caldas ore deposit has been
the subject of a number of studies that have
characterized its geology, geochemistry,
hydrology, and hydrochemistry in order to
understand ore formation and U transport
65. Po9os de Caldas is a round-shaped
Mesozoic igneous alkaline complex of-33
km in diameter comprising suites of
alkaline volcanic and intrusive rocks mainly
phonolites and syenites 77. Most of the
radioactive and REE mineralization is
associated with heavy hydrothermal activity
and the formation of volcanic breccias that
host these deposits 77; 78. Subsequent
episodes of ultramafic magmatism and
lamprophyric dyke formation, followed by
intense weathering, resulted in the
formation of supergene zones producing
redox fronts that mobilized and enriched U
to lateritic levels 77. There are two sites for
U mineralization in this area: Osamu
Utsumi and Morro do Ferro mines. U
mineralization at Osamu Utsumi is the
result of supergene weathering beneath a
lateritic soil extending to an approximate
depth between 80 and 140 meters 79.
Oxidized and reduced zones along the redox
front are distinguished by sharp changes in
color. Most of the minerals hosting the bulk
of U in this mine are uraninite, pitchblende,
and brannerite. Precipitation of these U
bearing minerals is associated with
oxidation ofpyrite and secondary
precipitation of Fe oxy-hydroxides
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throughout the reaction front 79. A reactive
transport model by Lichtner and Waber 80
for the Osamu Utsumi mine successfully
predicts the migration of the redox front and
the resulting phases precipitated along the
reaction path. In this case, pyrite oxidation
causes the fluid to be reduced, resulting in
precipitation ofuraninite in the redox front
80; 81 Morro do Ferro is richer in Th and
depleted in U relative to Osamu Utsumi 29.
Groundwater sampled close to the surface
of this deposit is oxidized as expected, but
more reduced in deeper samples in the
boreholes. The high concentration of Th in
the groundwater is thought to be associated
to colloidal matter because of its low
solubility and its high partition with
colloidal matter at the Osamu Utsumi site
29. The Morro do Ferro plume was
measured using a vertical profile along a
transect comprising a limited set of
sampling boreholes. The plume length is
-0.15 kin.

3.2.4 Cigar Lake

The Cigar Lake unconformity-type U ore
deposit in northern Saskatchewan, Canada
82-84 is hydrothermal in origin, was formed
-1.3 Ma ago, and is confined to an altered

sandstone -430 meters below the surface 84;
85. The primary U minerals are uraninite
and pitchblende. Waters in contact with the
ore originate from an overlying permeable
sandstone aquifer. Because the Cigar Lake
ore deposit is not exposed at the surface, U
release is extremely slow. Weathering,
formation of a surrounding clay-rich matrix,
and capping by an impermeable quartz
cemented zone cause the groundwater in
contact with the ore body to be highly
reduced. The system has consequently been
assumed to be closed with respect to U. U
transport in this ore body has been modeled
by Liu et al. 86 using a near-field release
model assuming molecular diffusion
perpendicular to the clay zone and
advective groundwater flow parallel to the
clay zone. Bruno et al. 87 modeled the fluid
chemical evolution along different
flowpaths, using a simple kinetic mass
transfer calculation entailing oxidative
uraninite dissolution, assuming long
residence times. Indeed, Liu et al. 86 model
predicts very low U concentrations as
observed in the field. The confinement ofU
and other radionuclides in the clay zone
arrest their migration, therefore producing
plumes in the porous overlying sandstone
that are too narrow to be detected 86.

4.0 Plume Analysis

The maximum surface extension of both
artificial and natural plumes or maximum
plume axial length is used as the index
criteria to assess plume behavior. Note
though that the concept ofmaximum plume
axial length, as applied here, is by necessity
operational because of the random, limited,
and in most cases, subjectively biased well
sampling or monitoring used by different
workers at different sites. Moreover, the
highly distorted morphology of groundwater
plumes, the presence of daughter plumes,

and the presence of background levels of U
causes more uncertainty as to the real extent
of the 2-D surface coverage of these plumes.
To establish an objective basis of
comparison, visual inspection of plume
contour maps and U concentration data in
sample wells were used jointly to establish
the maximum plume axial lengths.
Specifically, the maximum plume axial
length is defined here as the maximum
distancebetween two points encompassing
thefarthestboundariesof theplume as
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constrainedand/orpermittedby the
samplingwell network in aparticularsite
where measurableUconcentrationsin the
range of O-2Oppb have been obtained.

Previous workers 88 conversely, have
considered the farthest distance between the
source (or highest contaminant
concentration) and the plume boundary.
This approach is useful in intuitively
assessing the limits for potential spreading
of a plume within a given area if the data set
is sufficiently large and reliable. For most U
plumes, temporal and spatial limitations in
well sampling and the generation of
daughter plumes through ongoing
remediation activities, or natural recharge,
makes identification of the source within a
waste site a very difficult task for a given
well monitoring network. This could lead to
underestimates of plume length that can only
be overcome by a large and fairly
dependable data set. Given the limited
amount of useful data, the irregular spatial
distribution of monitoring wells, and the
scarce number of the latter at each site, we
found the maximum axial length provides
(in the extreme case ofU mobilization) a
reasonably good estimate of the 2-D
contaminant surface coverage. Note there is
a general lack of temporal data for periods
longer than 5 years for most sites. Many of
the sites possessed a very large (hundreds of
meters across) and disperse source term.
The width ofthe source term is implicitly
counted in the maximum plume axial length
measurement. In other words, if the actual
plume advance were modeled as emanating
from a point source, the calculated plume
lengths would be a great deal less. In some
cases, particularly for the large scale natural
analogues (e.g., Po9os de Caldas and Oklo),
the plume lengths were estimated based on a
vertical profile using a linear monitoring
well transect. To illustrate the manner in
which plumes were measured, figures 8

through 11 show a number of the Title I
UMTRA plumes (Wyoming, Colorado, and
Arizona) and the labeled plume lengths.

Many of the UMTRA sites are located
within 2 or 3 kmn of rivers. There are a few
cases where groundwater plumes were
truncated by discharge into rivers, e.g.
Figure 8 - Riverton, Wyoming, as might be
expected where rivers are fed by
groundwater. In arid regions though, rivers
often lose water to adjacent aquifers and
many of the plumes we observed spread
parallel to, or away from, nearby rivers,
suggesting that measured plume lengths
reflect groundwater transport.
Table 5 shows all the U plumes considered
in this study along with estimated maximum
axial plume lengths. The frequency
distribution of maximum axial plume
lengths for all sites listed in table 5 is shown
in figure 12, and suggest that the maximum
observed distance ofmigration is a little
more than 2 kilometers. Note again that this
distance is the maximum observed spread of
the 10-20 ppb U plume contour, and that it
includes both upgradient and downgradient
limbs ofthe plume. This means, the
downgradient (maximum) reach ofplumes
from the source is substantially less than 2
km. If we calculate plume length using
contours of 44 ppb U, the MCL, most of the
plumes (ifnot all of them) would have an
axial length of approximately 0.5 km or less.
An anomalous long outlier is the plume
associated with the Konigstein mine 63; 64,
located 25 km southeast of the city of
Dresden, Germany and the UMTRA site
Falls City, Texas. In situ leaching (ISL) was
conducted in the Konigstein mine using
periodic inputs of sulfuric acid (H2SO 4) that
mixed and diluted with local groundwater
needing further additions of the acid to
continue the leaching process 63.

19

1



Page: 25
Number: 1 Author: rarnoldSubject: Highlight Date: 2/4/2020 6:36:12 PM -07'00'



Table 5. Summary of estimated maximum axial plume lengths and their site characteristics. The listed UMTRA sites are the only ones for which
plume length data can be extracted.

Max. Axial Min.Axial Sampled
Site Type Plume Length Plume Length Depth Sources Comments

(kin) (km) (m)

Canonsburg, PA

Crow Butte Uranium Mine
Unit 1,NB

Falls City, TX

Fernald Processing Site
(OH)

Grand Junction, CO

Gunnison, CO

Hanford (WA) 300 Area
process trench

Kennecott Uranium Facility
(WY)

Konigstein Mine, Germany

UMTRA
(Title I)

In situ
leaching

UMTRA
(Title 1)

UMTRA
(Title I)

UMTRA
(Title I)

UMTRA
(Title I)

UMTRA
(Title I)

UMTRA
Mine
(Title II)

In situ
leaching

0.3-0.37

0.63

4.95

1.3

2.5

2

0.79

0.69

2-8

0.07

3.94

0.61-0.78

0.47 - 0.6

0.4

0.52

0.26

3.6-4.0

89

90

39

91

92

93 a

94

95

63; 64

50-150

50-150

-15-350

Groundwater table can be found at
shallow depths in the fill. Humid

continental climate.

Pre-operational/baseline maximum
plume length measured to - 20 ppb.
Post-operational ISL mining caused
[U] to be orders of magnitude larger
in monitoring groundwater wells.

Plume analysis comprises tailings
pile areas 1, 2, 3, 4, 5, 6, and 7.
Largest UMTRA plume.

Private well monitoring locations
(1992-1996)

Bulk groundwater composition is
S04 rich and relatively HC0 3 poor.
Close to saturation with respect to

calcite.
Lindgrena reported a plume length
value of 1.5 km interpolated
distance to [U]=40 ppb.

Plume bounded by the Columbia
River

Highly irregular plume shape.
Maximum plume length measured

to -8 pCi/L
In situ leaching (ISL) of U with
sulfuric acid (H 2SO 4). Among
longest plume measured.
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Table 5 (cont.). Summary of estimated maximum axial plume lengths and their site characteristics.
Max. Axial Min.Axial

Site Type Plume Length Plume Length* Sampled Sources Comments
(km) (km) Depth (i)

LLNL-plume 1pit 4-5, CA

Maybell, CO

Monticello Millsite, CO

Monument Valley, AZ

Naturita, CO

New Rifle, CO

Rio Algom, Moab - Lisbon
Facility, UT

Riverton, WY

Slick Rock (NC), CO

Explosive
Activity

UMTRA
(Title I)

UMTRA
(Title I)

UMTRA
(Title I)

UMTRA
(Title I)

UMTRA
(Title I)

UMTRA
Mine
(Title II)

UMTRA
(Title I)

UMTRA
(Title I)

0.43

0.4

2.2-2.4

1.4

0.7

1.6

2.52

1.7

0.24

0.08

0.15

0.42

1.1

0.2

0.6

1.71

1.2

0.12

96

40-50 97

98

3617-47

3-76 99

30-95 100

13-45

7-8

101

34; 35; 102

20-50 103

Sampled 2nd quarter 1994; plume
length measured to the [234U +23 8U]=10 pCi/L (-30 ppb) contour.

U/TDS* ratio indicates that soluble
salts move further than U beyond the

mill tailing limits.

Plume length distance measured to a
214U + 238U concentration level of- 18

pCi/L (-54 ppb).
Plume length for the[U]T>44ppb
region (deep De Chelly aquifer) is
-0.7 km. Max. plume length

determined for the alluvial aquifer.
Plume length may be larger than
estimated value. Groundwater
sampling restricted to the shallow

river alluvium.

U/TDS ratio is similar in all sampling
wells suggesting that U salts and U

migrate at the same rate.

Maximum plume length measured to
10 -20 pCi/L natural U sampling well
- among the largest Title II plumes

Lindgrena reported a plume length
value of 0.9 km interpolated distance

to the 44 ppb [U] point
Sampling restricted to tailings pile.
Plume may be bigger than estimated.
Monitoring wells at plume boundary

show [U] z 900-1000 ppb.
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Table 5 (cont.). Summary of estimated maximum axial plume lengths and their site characteristics.
Max. Axial Min.Axial Sampled

Site Type Plume Length Plume Length Depthle Sources Comments
(ikm) (km) D

Slick Rock (UC), CO

Sohio Western L-Bar, NM

Split Rock (WY)
Northwest Valley

Split Rock, (WY)
Southwest Valley

Split Rock (WY) Between
Northwest and Southwest

Valley

Tuba City, AZ

Weldon Springs Site,
Missouri (WSOW)

Weldon Springs Site,
Missouri (WSCP)

UMTRA
(Title I)

UMTRA
Mine
(Title II)

UMTRA
(Title II)

UMTRA
(Title II)

UMTRA
(Title II)

UMTRA
(Title I)

UMTRA
(Title I)

UMTRA
(Title I)

0.5

1.34

2.63

2.51

0.2

0.96

0.75

0.86

2

1.12 0.5

20-50 103

104

0-30

0-30

0-30

15-18

0.6

1.1

105

105

105

12; 37; 106; 107

108

108

Site is bounded by a topographic
high and a river.

Maximum and minimum plume
lengths are approximate - few
wells available for measuring

natural U sampling

Mill tailings still remain in place.
Long plume length for an UMTRA

site.

Mill tailings still remain in place.
Long plume length for an UMTRA

site.

Mill tailings still remain in place.
Plume length measured between
two valleys containing the mill
processing plants and tailings.

Maximum plume length measured
to [U]> 40 ppb 107.

Plume length value is very
approximate. [U] well data is very
heterogeneous. Multiple plumes
observed. Very localized plume
lengths with [U]> 15 pCi/L (-45

ppb) are only reported.

Multiple plumes observed. Same
explanation as above.
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Table 5 (cont.). Summary of estimated maximum axial plume lengths and their site characteristics.

Max. Axial Min.Axial Sampled

Site Type Plume Length Plume Length Depth (m)
(km) (kin)

Koongarra ore deposit,
Alligator River Uranium

Field, Australia

Bangombe, Oklo natural
reactors, Gabon

Okelobondo, Oklo natural
reactors, Gabon

Osama Utsumi, Poqos de
Caldas, Brazil

Morro do Ferro, Po9os de
Caldas, Brazil

Cigar Lake ore deposit,
Canada

Natural
Analogue

Natural
Analogue

Natural
Analogue

Natural
Analogue

Natural
Analogue

Natural
Analogue

0.48-0.5 0.38

0.25

13-25

25-500

0.9-1.0 6-100

0.5-0.6

0.15

0-125

0-85

0.4 0-500

32; 67; 73

68; 69;75; 109; 110

68; 69; 75; 76; 109; 110

78; 111-113

78; 111; 112; 114

84; 87

* Minimum axial lengths are measured perpendicular to maximum axial length.

Presence of a weathered zoned.
Uranyl-carbonate complexes
predominant due to high HC0 3

concentration in deeper
groundwater.

Presence ofa weathered zone.
Groundwater chemistry controlled
by the Fe2+/Fe(OH)3equilibria.
Fluids are not enriched in C0 2.

Presence of a weathered zone.
Groundwater chemistry controlled
by the Fe2÷/Fe(OH)3 (reduced) and

Mn 2÷/MnOOH (oxidized)
equilibria. The latter is richer in

CO2.

Presence of a weathered zone.
Pyrite oxidation induces reduction
of fluids and subsequentUO 2
precipitation in the redox front.

Presence of a weathered zone. Th
rich deposit. The presence in

groundwater is probably associated
to colloids. Ore zone is very close

to the surface.
Deep (-430 m) and concealed
unconformity type U deposit.

Capped by an impermeable quartz
barrier. Considered a closed

system.
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Leached contaminants have therefore been
spread further than they would have
otherwise. ISL has been used in many U
mines in the United States, e.g., Falls City,
Texas, and worldwide 115 and is being
currently considered as a cheaper option for
future U mining by various countries 116;
117 Falls City (Texas) mill site show the
largest observed plume for a Title I
UMTRA site. It also has a fairly recent
history of secondary solution mining
operations between 1978 to 1982 which
may be attributed to its spatial extent of
contamination1 18. Some examples of
previous and presently planned use of ISL
solution mining are Germany (Konigstein),
Czech Republic (Strdz mine in north
Bohemia), Bulgaria, Ukraine, Russia,
Kazakhstan, Uzbekistan, China, United
States, and Australia 116; 117; 119. The

Konigstein mine is probably the best
studied example of intensive use of ISL in
U mining and its consequences on aquifer
and groundwater contamination 115. A
recent example of ISL solution mining by
injection of an oxidant and a carbonate-rich
solution in the USA is the Crow Butte U
mine unit 1 in Nebraska 90. The
groundwater chemical patterns of post
operational ISL activities show a plausible
maximum plume length increase that may
exceed -3-4 times that ofpre
operational/baseline standards (baseline
max. plume length • 0.62 km)9 0. Even the
subsequent restoration/stabilization activity
of groundwater quality at this site shows U
concentrations that exceed MCL limits
further beyond the monitoring well
network.

5.0 Discussion and Conclusions

The hydrologic conductivities, Kds, and
original contaminant source masses for the
various sites probably vary by orders of
magnitude (see e.g. table 4). Nevertheless,
actual plume trajectories seem to cluster, and
suggest that the combined effects of
dispersion and chemical reaction are
sufficient to arrest most uranium plumes
before they move more than roughly a
kilometer from their source. The natural life
cycle of a uranium plume appears to involve
an initial movement away from a source
region that takes place within a few years and
does not exceed 2 kilometers,
followed by a geologically long period of
immobile quiescence. Natural plumes from
ores that have been weathered and subjected
to periodic meteoric inputs for long periods of
time do not migrate appreciably beyond their
known natural barriers, even during mining.
Similarly, the UMTRA sites do not show a

significant dispersion of contaminants beyond
the limits of the contaminated area, even
though these are not as deeply buried and are
in more porous strata than those found in the
natural analogues and ore U mining sites.
The plume length and the U concentration in
monitoring wells remain relatively constant,
or change insignificantly, for periods of time
approaching 15 years in many casesa. It
appears that sorption, dilution, and
precipitation are sufficiently effective sinks to
limit short-term (years to decades) the
advance of artificial U plumes. In long-term
situations (thousands to millions of years),
weathering processes and secondary
precipitation of oxidized uranyl phases
appears to limit advance of natural plumes.
This picture ofU plume behavior has a
number of implications for activities

aE. R. Lindgren (unpublished report)
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Figure 8. Riverton (Wyoming) plume 35. The thick light-gray line parallel to the elongated U plume
contours denotes the estimated maximum axial plume length (see text).
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Figure 9. Gunnison (Colorado) plume 93. The thick light-gray line is the estimated maximum axial plume
length as in figure (see figure 8).
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Figure 10. Tuba City (Arizona) plume 107. The thick light-gray line is the estimated maximum axial
plume length as in figure (see figure 8).
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Figure 11. Slick Rock (Colorado) plume 10 3 . The thick light-gray line is the estimated maximum axial
plume length as in figure (see figure 8).
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associated with remediation and
monitoring. To begin with, these results set
very clear limits on what reaction-transport
model outputs should look like. Although
input functions and sub-models can vary
widely because "every site is different",
output predictions of U movement in
subsurface environments do
not exceed roughly 2 kilometers and
represent natural plume behavior, unless
special chemistries, and possibly
hydrologies are involved, e.g., active
sulfuric acid leaching or perhaps,
demonstrable fast path fractures. Long
term monitoring wells placed ahead of
plumes assuming steady long-term plume
advance may never detect their targets. In
situ remediation that relies on mobilization
by chelating ligands may ultimately result
in anomalous long plume movement.
Source term removal alone seems to limit
plume advance. This picture assumes no
change in the geochemical state of the
attenuated uranium near the source, such as
the introduction of chelating agents and/or
a deleterious shift in redox conditions.

Only two of the few plumes examined for
the Title II sites Rio Algom (Utah) and
Split Rock (Wyoming) exceed plume
lengths >2.5 km, which represent the
longest estimated distances in this study. It
is expected that Title II sites produce longer
plumes because the source term is still in
place; however the rest of these fall well
within the plume length distribution range
(i.e., <2km) obtained for both UMTRA
Title I and Title II sites.

Lastly, it should be noted that geochemical
factors favor uranium transport to be
greater than the transport of many other
cationic metals and radionuclides such as
Pb, Cd, 9"Sr, 137Cs because U is a relatively
weak sorber and/or because the soil
minerals it forms are relatively soluble.
Moreover, the fraction of U that sorbs
irreversibly in soils is relatively small. For
these reasons, we should expect a plume
advance for most other cationic metals and
radionuclides to be substantially less than
the 2 kilometers observed for U.
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Figure 12. Histogram of maximum plume lengths for all considered uranium plumes in this study (n=28;
see text).
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